Abstract
Due to the equipment error, environmental interference and data transmission delay of vehicle flow detection, the accuracy and real-time performance of vehicle perception and traffic flow data will be affected to some extent, resulting in poor traffic signal control effect. Therefore, a data-driven traffic signal adaptive control algorithm is designed by integrating vehicle perception and traffic flow data. To complete the modeling of urban traffic, the discrete distribution and continuous distribution of traffic are obtained. Based on this research environment, the DV-hop localization algorithm is improved to sense the vehicle position. Based on the phase space reconstruction of traffic flow time series and vehicle location information, traffic flow data is predicted. Based on the driving of traffic data, the vehicle types are divided into small, medium and large three categories, and the impact weights are assigned respectively, and the weight values affecting the final allocation of green time are obtained to realize the allocation of green time. The experimental results show that: The research algorithm can not only predict the traffic flow intensity effectively, but also the predicted results are highly coincident with the actual traffic flow intensity. Vehicle arrival rates are higher, vehicle delays are shorter, and vehicles stop fewer times on average.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.