Abstract

Data-driven methods are becoming an essential part of computational mechanics due to their advantages over traditional material modeling. Deep neural networks are able to learn complex material response without the constraints of closed-form models. However, data-driven approaches do not a priori satisfy physics-based mathematical requirements such as polyconvexity, a condition needed for the existence of minimizers for boundary value problems in elasticity. In this study, we use a recent class of neural networks, neural ordinary differential equations (N-ODEs), to develop data-driven material models that automatically satisfy polyconvexity of the strain energy. We take advantage of the properties of ordinary differential equations to create monotonic functions that approximate the derivatives of the strain energy with respect to deformation invariants. The monotonicity of the derivatives guarantees the convexity of the energy. The N-ODE material model is able to capture synthetic data generated from closed-form material models, and it outperforms conventional models when tested against experimental data on skin, a highly nonlinear and anisotropic material. We also showcase the use of the N-ODE material model in finite element simulations of reconstructive surgery. The framework is general and can be used to model a large class of materials, especially biological soft tissues. We therefore expect our methodology to further enable data-driven methods in computational mechanics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.