Abstract
Depressed patients show abnormalities in brain connectivity at rest, including hyperconnectivity within the default mode network (DMN). However, there is well-known heterogeneity in the clinical presentation of depression that is overlooked when averaging connectivity data. We used data-driven parsing of neural connectivity to reveal subgroups among 80 depressed patients completing resting state fMRI. Directed functional connectivity paths (eg, region A influences region B) within a depression-relevant network were characterized using Group Iterative Multiple Model Estimation, a method shown to accurately recover the direction and presence of connectivity paths in individual participants. Individuals were clustered using community detection on neural connectivity estimates. Subgroups were compared on network features and on clinical and biological/demographic characteristics that influence depression prognosis. Two subgroups emerged. Subgroup A, containing 71% of the patients, showed a typical pattern of connectivity across DMN nodes, as previously reported in depressed patients on average. Subgroup B exhibited an atypical connectivity profile lacking DMN connectivity, with increased dorsal anterior cingulate-driven connectivity paths. Subgroup B members had an over-representation of females (87% of Subgroup B vs 65% of Subgroup A; χ2=3.89, p=0.049), comorbid anxiety diagnoses (42.9% of Subgroup B vs 17.5% of Subgroup A; χ2=5.34, p=.02), and highly recurrent depression (63.2% of Subgroup B vs 31.8% of Subgroup A; χ2=5.38, p=.02). Neural connectivity-based categorization revealed an atypical pattern of connectivity in a depressed patient subset that would be overlooked in group comparisons of depressed and healthy participants, and tracks with clinically relevant phenotypes including anxious depression and episodic recurrence. Data-driven parsing suggests heterogeneous substrates of depression; ideally, future work building on these findings will inform personalized treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.