Abstract

We address the issue of stabilizing control design of DC–DC power converters with active loads, e.g. distributed generation systems, cascade converters, converters feeding DC buses, etc. We test the results in the presence of potential destabilizers, such as constant power loads (CPLs). The proposed approach is particularly devised for those situations where a full network dynamic model is either not available or it has an unsuitable level of complexity—in terms of number of state–space variables and equations, e.g. multiple loads, DC distribution networks, micro grids, etc. This is due to its model-free approach based on a data-driven strategy, which is able to guarantee stability using a LMI-Lyapunov approach. Elements of behavioral system theory such as linear difference systems, quadratic difference forms and Lyapunov theory, are crucial for the development of the proposed stabilizing control schemes. We also provide simulation and experimental results to corroborate the practical advantages of the proposed framework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.