Abstract

The degradation of near-surface permafrost under ongoing climate change on the Qinghai‒Tibet Plateau (QTP) is of growing concern due to its impacts on geomorphological and ecological processes, as well as human activities. There is an increased need for an in-depth understanding of the evolution of permafrost temperature (Ttop) and active-layer thickness (ALT) at a fine scale on the QTP under climate change. This study evaluated the permafrost thermal development over the QTP for the period 1980–2100 at a 1 km2 scale using a physically analytical model accounting for both climatic and local environmental factors based on multi-source data. The model results were validated against thermal borehole measurements and baseline maps. The modeled current (2001–2018) permafrost area (Ttop ≤ 0 °C) covers 1.42 × 106 km2 (ca. 56.1% of the QTP land area), 10.1% of which thawed over the historical period 1981–2000. To assess how the ground thermal regime could develop in the future, we utilized the multi-model ensemble mean of downscaled outputs from eight climate models under three Shared Socio-economic Pathways (i.e., SSP126, 245, and 585) in CMIP6 to force the permafrost model. Model results suggest that the current (2001–2018) permafrost extent is likely to dramatically contract in the future period (2021–2100), as indicated by consistent Ttop warming and ALT increasing due to climate changing. About 26.9%, 59.9%, 80.1% of the current permafrost is likely to disappear by the end of the 21st century under SSP126, SSP245, and SSP585 scenarios, respectively. The simulation results may further provide new opportunities to assess the future impacts of climate warming on environments and engineering development over the QTP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.