Abstract

ABSTRACTPairs of conjugate donor-acceptor fluorescent probes have proven themselves useful in stimulated emission depletion (STED) microscopy in recent years. For instance, it has been shown that the lifetime of said probes directly correlates to the resolution of the microscope. However, once the lifetimes of the probes have been optimized, it is desirable to control their fluorescence in order to improve the resolution further. Here, we propose combining model-free control with sliding mode control to track nanosecond pulses of red-shifted acceptor fluorescence in order to inhibit visible light emitted from the image plane, shrink the point spread function, and subsequently improve the resolution of the microscope. This is achieved by automatic adjustment of the STED laser beam pump power. This controller is numerically simulated against a generic model created from Förster resonance energy transfer (FRET) theory. However, since it is data-driven, it can be easily applied to various physical systems with drastically different dynamics. This work provides a reliable theoretic control solution to modern super resolution microscopy for biological imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.