Abstract
Abstract Sensor selection is one of the key factors that dictate the performance of estimating vertical wheel forces in vehicle durability design. To select K most relevant sensors among S candidate ones that best fit the response of one vertical wheel force, it has (SK) possible choices to evaluate, which is not practical unless K or S is small. In order to tackle this issue, this paper proposes a data-driven method based on maximizing the marginal likelihood of the data of the vertical wheel force without knowing the dynamics of vehicle systems. Although the resulting optimization problem is a mixed-integer programming problem, it is relaxed to a convex problem with continuous variables and linear constraints. The proposed sensor selection method is flexible and easy to implement, and the hyper-parameters do not need to be tuned using additional validation data sets. The feasibility and effectiveness of the proposed method are verified using numerical examples and experimental data. In the results of different data sizes and model orders, the proposed method has better fitting performance than that of the group lasso method in the sense of the 2-norm based metric. Also, the computational time of the proposed method is much less than that of the enumeration-based method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Computing and Information Science in Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.