Abstract

In the last two decades, soft sensors proved themselves as a valuable alternative to the physical sensor for gathering critical process information. A self-sensing technique for the magnetic bearing is considered as a soft sensor since the object position is estimated from the current signal of the electromagnet. Self-sensing techniques developed so far are the model-driven soft sensors. This paper presents a data-driven self-sensing technique to compensate for the nonlinear characteristic of the electromagnet. First, model-driven self-sensing techniques and their problems are reviewed. Then, data-driven self-sensing technique using recurrent neural network (RNN) is proposed to compensate for the nonlinear characteristics. Both the position control and self-sensing with the RNN are implemented in a single digital signal processor. The effectiveness of the proposed method is experimentally verified by comparison with the current slope method. Both estimation errors during initial levitation and jitter after levitation are reduced by 90% and 36%, respectively. Estimation error with 2 Hz sine wave is improved by 65.9%, while jitter during self-sensing levitation is cut down to 26.8%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.