Abstract

Energy storage systems (ESS) may provide the required flexibility to cost-effectively integrate weather-dependent renewable generation, in particular by offering operating reserves. However, since the real-time deployment of these services is uncertain, ensuring their availability requires merchant ESS to fully reserve the associated energy capacity in their day-ahead schedule. To improve such conservative policies, we propose a data-driven probabilistic characterization of the real-time balancing stage to inform the day-ahead scheduling problem of an ESS owner. This distributional information is used to enforce a tailored probabilistic guarantee on the availability of the scheduled reserve capacity via chance constrained programming, which allows a profit-maximizing participation in energy, reserve and balancing markets. The merit order-based competition with rival resources in reserve capacity and balancing markets is captured via a bi-level model, which is reformulated as a computationally efficient mixed-integer linear problem. Results show that a merchant ESS owner may leverage the competition effect to avoid violations of its energy capacity limits, and that the proposed risk-aware method allows sourcing more reserve capacity, and thus more value, from storage, without jeopardizing the real-time reliability of the power system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.