Abstract

In this paper, we investigate the data-driven rogue waves solutions of the focusing and the variable coefficient nonlinear Schrödinger (NLS) equations by the deep learning method from initial and boundary conditions. Specifically, first- and second-order rogue wave solutions for the focusing NLS equation and three deformed rogue wave solutions for the variable coefficient NLS equation are solved using physics-informed memory networks (PIMNs). The effects of optimization algorithm, network structure, and mesh size on the solution accuracy are discussed. Numerical experiments clearly demonstrate that the PIMNs can capture the nonlinear features of rogue waves solutions very well. This is of great significance for revealing the dynamical behavior of the rogue waves solutions and advancing the application of deep learning in the field of solving partial differential equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.