Abstract

Filtering or state estimation plays an important role in the cyber-physical systems (CPSs). This paper aims to solve the data-driven non-fragile filtering problem for the cyber-physical system. Randomly occurring gain variations are considered so as to account for the parameter fluctuations occurring during the filter implementation. The data-driven communication mechanism is utilized to reduce the measurement transmission frequency and save energy for the CPSs. Therefore, a unified ${H_{\infty }}$ filtering framework that combines the data-driven communication mechanism and the non-fragility of filters is constructed. Based on this unified framework, the influence of the simultaneous presence of networked-induced packet dropouts, quantization, randomly occurring nonlinearities and randomly occurring parameter uncertainties in the CPS is investigated. A modified dropouts model is proposed under the data-driven communication mechanism. By utilizing stochastic analysis and Lyapunov functional theory, sufficient conditions guaranteeing the filtering performance are derived. The $H_{\infty }$ filter is obtained through the proposed algorithm. Last, a simulation is given to demonstrate the filtering method for CPS in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.