Abstract

This study proposes a data-driven method for assessing reliability, based on the scarce input dataset with multidimensional correlation. Since considering the distribution parameters estimated from the scarce dataset as those of the population may lead to epistemic uncertainty, the bootstrap resampling algorithm is adopted to infer the distribution parameters as interval parameters. To account for the variable dependence, vine copula theory is utilized to construct the joint probability density function (PDF) of input variables, and maximum likelihood estimation (MLE) and Akaike information criterion (AIC) analysis are employed to select optimal copulas based on the samples for the vine structure. Subsequently, the failure probability bounds of a response function are calculated based on the constructed joint PDF with interval distribution parameters by the active learning Kriging (AK) method combining the sparse grid integration (SGI) method. Finally, several examples are provided to demonstrate the feasibility and efficiency of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.