Abstract

In this article, we propose a data-driven reduced basis (RB) method for the approximation of parametric eigenvalue problems. The method is based on the offline and online paradigms. In the offline stage, we generate snapshots and construct the basis of the reduced space, using a POD approach. Gaussian process regressions (GPR) are used for approximating the eigenvalues and projection coefficients of the eigenvectors in the reduced space. All the GPR corresponding to the eigenvalues and projection coefficients are trained in the offline stage, using the data generated in the offline stage. The output corresponding to new parameters can be obtained in the online stage using the trained GPR. The proposed algorithm is used to solve affine and non-affine parameter-dependent eigenvalue problems. The numerical results demonstrate the robustness of the proposed non-intrusive method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.