Abstract

Cellular probe data, which is collected by cellular network operators, has emerged as a critical data source for human-trace inference in large-scale urban areas. However, because cellular probe data of individual mobile phone users is temporally and spatially sparse (unlike GPS data), few studies predicted people-flow using cellular probe data in real-time. In addition, it is hard to validate the prediction method at a large scale. This paper proposed a data-driven method for dynamic people-flow prediction, which contains four models. The first model is a cellular probe data preprocessing module, which removes the inaccurate and duplicated records of cellular data. The second module is a grid-based data transformation and data integration module, which is proposed to integrate multiple data sources, including transportation network data, point-of-interest data, and people movement inferred from real-time cellular probe data. The third module is a trip-chain based human-daily-trajectory generation module, which provides the base dataset for data-driven model validation. The fourth module is for dynamic people-flow prediction, which is developed based on an online inferring machine-learning model (random forest). The feasibility of dynamic people-flow prediction using real-time cellular probe data is investigated. The experimental result shows that the proposed people-flow prediction system could provide prediction precision of 76.8% and 70% for outbound and inbound people, respectively. This is much higher than the single-feature model, which provides prediction precision around 50%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.