Abstract

The North Pacific exhibits patterns of low-frequency variability on the intra-annual to decadal time scales, which manifest themselves in both model data and the observational record, and prediction of such low-frequency modes of variability is of great interest to the community. While parametric models, such as stationary and non-stationary autoregressive models, possibly including external factors, may perform well in a data-fitting setting, they may perform poorly in a prediction setting. Ensemble analog forecasting, which relies on the historical record to provide estimates of the future based on past trajectories of those states similar to the initial state of interest, provides a promising, nonparametric approach to forecasting that makes no assumptions on the underlying dynamics or its statistics. We apply such forecasting to low-frequency modes of variability for the North Pacific sea surface temperature and sea ice concentration fields extracted through Nonlinear Laplacian Spectral Analysis. We find such methods may outperform parametric methods and simple persistence with increased predictive skill.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.