Abstract
Unsteady flow fields over a circular cylinder are used for training and then prediction using four different deep learning networks: generative adversarial networks with and without consideration of conservation laws; and convolutional neural networks with and without consideration of conservation laws. Flow fields at future occasions are predicted based on information on flow fields at previous occasions. Predictions of deep learning networks are made for flow fields at Reynolds numbers that were not used during training. Physical loss functions are proposed to explicitly provide information on conservation of mass and momentum to deep learning networks. An adversarial training is applied to extract features of flow dynamics in an unsupervised manner. Effects of the proposed physical loss functions and adversarial training on predicted results are analysed. Captured and missed flow physics from predictions are also analysed. Predicted flow fields using deep learning networks are in good agreement with flow fields computed by numerical simulations.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.