Abstract

AbstractStainless steel components in advanced gas‐cooled reactors (AGRs) are susceptible to creep–fatigue cracking at high temperatures. Quantifying the probability of creep–fatigue crack initiation requires probabilistic numerical simulations; these are complex and computationally intensive. Here, we present a data‐driven approach to develop fast probabilistic surrogate models of creep–fatigue crack initiation in 316H stainless steel. We perform a set of Monte Carlo simulations based on the R5V2/3 high temperature assessment procedure and determine the sensitivity of the probability of crack initiation to loads and operating conditions. The data are used to train different supervised machine learning models considering Bayesian hyperparameter optimization. We discuss the relative performance of such models and show that a gradient tree boosting algorithm results in surrogate models with the highest accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.