Abstract

Social responsibility is a key factor for organizations to achieve sustainable success in the modern competitive market. This study proposes a hybrid VIKOR method to evaluate textile suppliers based on their social performance under uncertain and multi-objective conditions. The method can handle fuzzy, stochastic, and interval data simultaneously. The social criteria for the evaluation are derived from the literature review, the SA8000 standards, and the United Nations’ recommendations. Some of the criteria are also aligned with the World Bank’s Social Responsibility Diamond Model and the United Nations’ Sustainable Development Goals. Moreover, this study presents a fuzzy mathematical model for fabric purchasing that incorporates social criteria and the quality level into the optimization process. A goal programming method is developed based on the mathematical properties of the multi-objective model. A numerical study is conducted in the textile industry to demonstrate the efficiency and effectiveness of the proposed approaches. A comprehensive sensitivity analysis has been performed to investigate the behavior of the presented mathematical model under different conditions, and the results have been discussed concerning the insights for managers and stakeholders in the textile industry. The proposed model demonstrates that: 1) Customer demand and fabric orders have a direct relationship with increasing sales. 2) The fabric unit price has a direct impact on the quality value and requires cost control policies or pricing negotiations with suppliers. 3) Improving supplier and customer relations and formulating pricing consistent with social value are among the most important issues for the success of the textile and clothing industry. The best-fitting line successfully explains the variability of social performance and customer demand with an accuracy of 99.35 %.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.