Abstract
The decision of whether to admit a patient to a critical care unit is a crucial operational problem that has significant influence on both hospital performance and patient outcomes. Hospitals currently lack a methodology to selectively admit patients to these units in a way that patient health risk metrics can be incorporated while considering the congestion that will occur. The hospital is modeled as a complex loss queueing network with a stochastic model of how long risk-stratified patients spend time in particular units and how they transition between units. A Mixed Integer Programming model approximates an optimal admission control policy for the network of units. While enforcing low levels of patient blocking, we optimize a monotonic dual-threshold admission policy. A hospital network including Intermediate Care Units (IMCs) and Intensive Care Units (ICUs) was considered for validation. The optimized model indicated a reduction in the risk levels required for admission, and weekly average admissions to ICUs and IMCs increased by 37% and 12%, respectively, with minimal blocking. Our methodology captures utilization and accessibility in a network model of care pathways while supporting the personalized allocation of scarce care resources to the neediest patients. The interesting benefits of admission thresholds that vary by day of week are studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.