Abstract

Turbidity currents deliver sediment rapidly from the continental shelf to the slope and beyond; and can be triggered by processes such as shelf resuspension during oceanic storms; mass failure of slope deposits due to sediment- and wave-pressure loadings; and localized events that grow into sustained currents via self-amplifying ignition. Because these operate over multiple spatial and temporal scales, ranging from the eddy-scale to continental-scale; coupled numerical models that represent the full transport pathway have proved elusive though individual models have been developed to describe each of these processes. Toward a more holistic tool, a numerical workflow was developed to address pathways for sediment routing from terrestrial and coastal sources, across the continental shelf and ultimately down continental slope canyons of the northern Gulf of Mexico, where offshore infrastructure is susceptible to damage by turbidity currents. Workflow components included: (1) a calibrated simulator for fluvial discharge (Water Balance Model - Sediment; WBMsed); (2) domain grids for seabed sediment textures (dbSEABED); bathymetry, and channelization; (3) a simulator for ocean dynamics and resuspension (the Regional Ocean Modeling System; ROMS); (4) A simulator (HurriSlip) of seafloor failure and flow ignition; and (5) A Reynolds-averaged Navier–Stokes (RANS) turbidity current model (TURBINS). Model simulations explored physical oceanic conditions that might generate turbidity currents, and allowed the workflow to be tested for a year that included two hurricanes. Results showed that extreme storms were especially effective at delivering sediment from coastal source areas to the deep sea, at timescales that ranged from individual wave events (~hours), to the settling lag of fine sediment (~days).

Highlights

  • The Gulf of Mexico continental margin generates >1.7 million barrels of oil per day, through >3500 oil platforms

  • Community Sediment Transport Modeling System (CSTMS) results for 2007–2008 indicated that the overall signature of sedimentation calculated from suspended sediment was deposition near fluvial sources, with patchy erosion and deposition elsewhere (Figure 8A)

  • Sediment resuspension sources: The results on the resuspension of sediments into bottom waters (SuspendiSlip) indicated suspended sediment concentrations (SSC) during times of wave activity averaged ~300 ppm v/v, up to ~5000 ppm v/v (5% v/v) at levels 1 m above the bottom

Read more

Summary

Introduction

The Gulf of Mexico continental margin generates >1.7 million barrels of oil per day, through >3500 oil platforms. In 2004, a large sediment failure in the wake of Hurricane Ivan toppled an oil platform offshore of the Gulf of Mexico and moved it ~0.17 km downslope, initiating oil and gas leaks at a water depth of 140 m [1]. Leakage from such offshore oil and gas infrastructure puts at risk about 40% of the USA’s coastal and estuarine wetlands, which are vital to recreation, agriculture, and a $1B/y seafood industry [2]

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call