Abstract

Hospital beds are a critical but limited resource shared between distinct classes of elective patients. Urgent elective patients are more sensitive to delays and should be treated immediately, whereas regular patients can wait for an extended time. Public hospitals in countries like China need to maximize their revenue and at the same time equitably allocate their limited bed capacity between distinct patient classes. Consequently, hospital bed managers are under great pressure to optimally allocate the available bed capacity to all classes of patients, particularly considering random patient arrivals and the length of patient stay. To address the difficulties, we propose data-driven stochastic optimization models that can directly utilize historical observations and feature data of capacity and demand. First, we propose a single-period model assuming known capacity; since it recovers and improves the current decision-making process, it may be deployed immediately. We develop a nonparametric kernel optimization method and demonstrate that an optimal allocation can be effectively obtained with one year's data. Next, we consider the dynamic transition of system state and extend the study to a multiperiod model that allows random capacity; this further brings in substantial improvement. Sensitivity analysis also offers interesting managerial insights. For example, it is optimal to allocate more beds to urgent patients on Mondays and Thursdays than on other weekdays; this is in sharp contrast to the current myopic practice.

Highlights

  • Achieving optimal capacity allocation among multiple streams of demand is one of the main challenges faced by healthcare resource managers. e challenge concerns two aspects: (1) how much capacity quota should be allocated to each demand stream and (2) how to prioritize multiple streams of demand with distinct sensitivity to delays and distinct per-unit revenue, with the objective of simultaneously maximizing hospital revenue and equity

  • Public hospital managers are under great pressure to pursue the trade-o between revenue and equity when allocating limited and critical bed capacity

  • In the presence of capacity and demand variability, hospital managers must balance the trade-o between being overloaded or underloaded to mitigate the risk of long waiting time for urgent patients, high extra bed quantity, or excess idling

Read more

Summary

Introduction

Achieving optimal capacity allocation among multiple streams of demand is one of the main challenges faced by healthcare resource managers. e challenge concerns two aspects: (1) how much capacity quota should be allocated to each demand stream and (2) how to prioritize multiple streams of demand with distinct sensitivity to delays and distinct per-unit revenue, with the objective of simultaneously maximizing hospital revenue and equity. In operations management and health care application, Ban and Rudin [18] considered a feature-based data-driven newsvendor problem and proposed two linear programming algorithms to find the optimal order quantity. As stated by Barz and Rajaram [22], hospital resource capacity cannot be stored for future time periods, and arrival patients are customers demanding a certain combination of resources and occupying the resources for a certain length of time at a price In this case, a decisionmaker faces two issues: (1) whether to satisfy a demand with a revenue or reject it at a cost when assuming only one patient will arrive and be served in a single period, with limited perishable resource being accessed by multipriority patients and (2) the amount of capacity to be reserved for high-priority demand in order to maximize both revenue and equity. This paper investigates bed capacity allocation to balance revenue and equity among multiple demand streams by considering the randomness of both patient arrivals and length of stays from the operational perspective of a large public hospital.

Single-Period Model under Certain Capacity
Multiperiod Model under Random Capacity
Findings
Conclusions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.