Abstract
In the manufacture of pelleted catalyst products, controlling physical properties of the pellets and limiting their variability is of critical importance. To achieve tight control over these critical quality attributes (CQAs), it is necessary to understand their relationship with the properties of the powder feed and the pelleting process parameters (PPs). This work explores the latter, using standard multivariate methods to gain a better understanding of the sources of process variability and the impact of PPs on the density and strength of the resulting pellets. A Kilian STYL’ONE EVO Compaction Simulator machine was used to produce over 1000 pellets, whose properties were measured, with varied powder feed mechanism and powder feed rate. Process data recorded by the Compaction Simulator machine were analysed using Principal Component Analysis (PCA) to understand the key aspects of variability in the process. This was followed by Partial Least Squares (PLS) regression to predict pellet density and hardness from the Compaction Simulator data. Pellet density was predicted accurately, achieving an R2 metric of 0.87 in 10-fold cross-validation, and 0.86 in an independent hold-out test. Pellet hardness proved more difficult to predict accurately, with an R2 of 0.67 in 10-fold cross-validation, and 0.63 in an independent hold-out test. This may however simply be highlighting measurement quality issues in pellet hardness data. The PLS models provided direct insights into the relationships between pelleting PPs and pellet CQAs and highlighted the potential for such models in process monitoring and control applications. Furthermore, the overall modelling process boosted understanding of the key sources of process and product variability, which can guide future efforts to improve pelleting performance.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.