Abstract
We present a data-driven and interpretable approach for reducing the dimensionality of chaotic systems using spectral submanifolds (SSMs). Emanating from fixed points or periodic orbits, these SSMs are low-dimensional inertial manifolds containing the chaotic attractor of the underlying high-dimensional system. The reduced dynamics on the SSMs turn out to predict chaotic dynamics accurately over a few Lyapunov times and also reproduce long-term statistical features, such as the largest Lyapunov exponents and probability distributions, of the chaotic attractor. We illustrate this methodology on numerical data sets including delay-embedded Lorenz and Rössler attractors, a nine-dimensional Lorenz model, a periodically forced Duffing oscillator chain, and the Kuramoto-Sivashinsky equation. We also demonstrate the predictive power of our approach by constructing an SSM-reduced model from unforced trajectories of a buckling beam and then predicting its periodically forced chaotic response without using data from the forced beam.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chaos: An Interdisciplinary Journal of Nonlinear Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.