Abstract

Passenger flow distribution in the metro system is fundamental for many applications such as network planning and design, passenger flow forecasting, individual travel activity modeling and emergency response management. However, in most metro systems the smart card automated fare collection (AFC) equipment in Beijing only record when and where a passenger enters and leaves the metro network. Therefore, how to accurately determine passenger flow distribution in unknown travel routes remains a challenging task for the managers. This paper presents a methodology for reconstructing metro passenger flow distribution from large-scale smart card data. A clustering method was first applied to group the travel time of passengers between origin–destination (OD) station pairs into different clusters. Then an approach was proposed that considered both uncertain walking time and transfer time, to estimate the theoretical travel time of all possible routes between the OD pair. An approach to measure the similarity was further employed to match each travel time cluster to a most-likely travel route, and finally obtained the passengers’ flow of every route. Compared with two classical methods, the proposed approach was more accurate and efficient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.