Abstract
AbstractHow do we model the complexity of social perception? A major methodological problem is that the space of possible variables driving social perceptions is infinitely large, thus posing an insurmountable hurdle for conventional approaches. Here, we describe a set of data‐driven methods whose objective is to identify quantitative relationships between high‐dimensional variables (e.g., visual images) and behaviors (e.g., perceptual decisions) with as little bias as possible. We focus on social perception of faces, although the methods could be applied to other visual and nonvisual categories. We review two reverse correlation approaches: (a) psychophysical methods based on judgments of images altered with randomly generated noise, where the analysis relates the random variations of the images to judgments; and (b) methods based on judgments of randomly generated faces from a statistical, multidimensional face space model, where the analysis relates the dimensions of the face model to judgments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.