Abstract

The fatigue response of Additive Manufacturing (AM) components is driven by manufacturing defects - whose size mainly depends on process parameters - and by the resulting microstructure - mainly affected by heat treatments and process parameters. In the paper, Machine Learning (ML) algorithms are applied to estimate the fatigue response from AM process parameters and heat treatment properties. Feed-forward neural networks (FFNN) and physics-informed neural network (PINN) algorithms are designed and validated on literature datasets of AM AlSi10Mg alloy, proving the effectiveness of physics-based ML approaches in predicting the fatigue response of AM parts. Leveraging PINN interpretability, the authors analyse the relationship between process parameters and fatigue response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.