Abstract

In this study, we extend the scope of the many-body TTM-nrg and MB-nrg potential energy functions (PEFs), originally introduced for halide ion-water and alkali-metal ion-water interactions, to the modeling of carbon dioxide (CO2) and water (H2O) mixtures as prototypical examples of molecular fluids. Both TTM-nrg and MB-nrg PEFs are derived entirely from electronic structure data obtained at the coupled cluster level of theory and are, by construction, compatible with MB-pol, a many-body PEF that has been shown to accurately reproduce the properties of water. Although both TTM-nrg and MB-nrg PEFs adopt the same functional forms for describing permanent electrostatics, polarization, and dispersion, they differ in the representation of short-range contributions, with the TTM-nrg PEFs relying on conventional Born-Mayer expressions and the MB-nrg PEFs employing multidimensional permutationally invariant polynomials. By providing a physically correct description of many-body effects at both short and long ranges, the MB-nrg PEFs are shown to quantitatively represent the global potential energy surfaces of the CO2-CO2 and CO2-H2O dimers and the energetics of small clusters, as well as to correctly reproduce various properties in both gas and liquid phases. Building upon previous studies of aqueous systems, our analysis provides further evidence for the accuracy and efficiency of the MB-nrg framework in representing molecular interactions in fluid mixtures at different temperature and pressure conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call