Abstract
This paper deals in the nonparametric estimation of additive models in the presence of missing data in the response variable. Specifically in the case of additive models estimated by the Backfitting algorithm with local polynomial smoothers [1]. Three estimators are presented, one based on the available data and two based on a complete sample from imputation techniques. We also develop a data-driven local bandwidth selector based on a Wild Bootstrap approximation of the mean squared error of the estimators. The performance of the estimators and the local bootstrap bandwidth selection method are explored through simulation experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.