Abstract
AbstractThis paper investigates the cooperative trajectory tracking (CTT) control problem of multiple autonomous underwater vehicles (AUVs). The multi‐AUV system is characterized by uncertain dynamics, being subjected to the impact about input saturation constraints and unmeasurable disturbances. First, a neural network‐based data‐driven control algorithm is proposed for the multi‐AUV system with unmeasurable disturbances and model parameters uncertain. The radial basis function neural network is employed to estimate the primary pseudo parameters of an equivalent data model, established through dynamic linearization methods. Subsequently, an iterative learning control approach based on adaptive gain is designed to act as a feedforward scheme along the iteration axis to enhance the tracking accuracy within a time constraint. Third, to prove that the resulting CTT control system fulfills the bounded stability under the proposed control approach, a formal stability analysis is provided. Finally, a simulation case study is conducted to illustrate the effectiveness of the proposed CTT control approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.