Abstract
Incipient fault detection and diagnosis (FDD) is an important measure to improve the efficient, safe and stable operation of high-speed trains. This paper proposes a data-driven FDD method, namely deep slow feature analysis and belief rule base method (DSFA-BRB), for the running gears of high-speed trains. The method uses two kinds of statistics to perform fault detection on the multi-dimensional data of the running gears. In addition, the characteristics of more accurate data are extracted, which greatly reduces the complexity of constructing a diagnostic and quantitative model. Further, by constructing a BRB model combining expert knowledge and data, it is possible to avoid misjudgment caused by data incompleteness. Compared with the traditional methods, the DSFA-BRB algorithm has better performance in reducing fault alarm probability. Finally, the validity of the algorithm is verified by the actual running gears system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.