Abstract

Abstract Through experience, designers develop guiding principles, or heuristics, to aid decision-making in familiar design domains. Generalized versions of common design heuristics have been identified across multiple domains and applied by novices to design problems. Previous work leveraged a sample of these common heuristics to assist in an agent-based design process, which typically lacks heuristics. These predefined heuristics were translated into sequences of specifically applied design changes that followed the theme of the heuristic. To overcome the upfront burden, need for human interpretation, and lack of generality of this manual process, this paper presents a methodology that induces frequent heuristic sequences from an existing timeseries design change dataset. Individual induced sequences are then algorithmically grouped based on similarity to form groups that each represent a shared general heuristic. The heuristic induction methodology is applied to data from two human design studies in different design domains. The first dataset, collected from a truss design task, finds a highly similar set of general heuristics used by human designers to that which was hand-selected for the previous computational agent study. The second dataset, collected from a cooling system design problem, demonstrates further applicability and generality of the heuristic induction process. Through this heuristic induction technique, designers working in a specified domain can learn from others’ prior problem-solving strategies and use these strategies in their own future design problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.