Abstract

The leading contribution to the uncertainties of atmospheric neutrino flux calculations arise from the cosmic-ray nucleon flux and the production cross sections of secondary particles in hadron-air interactions. The data-driven model developed in this work parametrizes particle yields from fixed-target accelerator data. The propagation of errors from the accelerator data to the inclusive muon and neutrino flux predictions results in smaller uncertainties than in previous estimates, and the description of atmospheric flux data is good. The model is implemented as part of the MCEq package, and hence can be flexibly employed for theoretical flux error estimation at neutrino telescopes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.