Abstract

This paper suggests a framework for the learning of discretizations of expensive forward models in Bayesian inverse problems. The main idea is to incorporate the parameters governing the discretization as part of the unknown to be estimated within the Bayesian machinery. We numerically show that in a variety of inverse problems arising in mechanical engineering, signal processing and the geosciences, the observations contain useful information to guide the choice of discretization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.