Abstract
We present Flood-SHE, a data-driven, statistically-based procedure for the delineation of areas expected to be inundated by river floods. We applied Flood-SHE in the 23 River Basin Authorities (RBAs) in Italy using information on the presence or absence of inundations obtained from existing flood zonings as the dependent variable, and six hydro-morphometric variables computed from a 10 m × 10 m DEM as covariates. We trained 96 models for each RBA using 32 combinations of the hydro-morphometric covariates for the three return periods, for a total of 2208 models, which we validated using 32 model sets for each of the covariate combinations and return periods, for a total of 3072 validation models. In all the RBAs, Flood-SHE delineated accurately potentially inundated areas that matched closely the corresponding flood zonings defined by physically-based hydro-dynamic flood routing and inundation models. Flood-SHE delineated larger to much larger areas as potentially subject of being inundated than the physically-based models, depending on the quality of the flood information. Analysis of the sites with flood human consequences revealed that the new data-driven inundation zones are good predictors of flood risk to the population of Italy. Our experiment confirmed that a small number of hydro-morphometric terrain variables is sufficient to delineate accurate inundation zonings in a variety of physiographical settings, opening to the possibility of using Flood-SHE in other areas. We expect the new data-driven inundation zonings to be useful where flood zonings built on hydrological modelling are not available, and to decide where improved flood hazard zoning is needed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.