Abstract

AbstractComputational complexity has been the bottleneck for applying physically based simulations in large urban areas with high spatial resolution for efficient and systematic flooding analyses and risk assessment. To overcome the issue of long computational time and accelerate the prediction process, this paper proposes that the prediction of maximum water depth can be considered an image‐to‐image translation problem in which water depth rasters are generated using the information learned from data instead of by conducting simulations. The proposed data‐driven urban pluvial flood approach is based on a deep convolutional neural network trained using flood simulation data obtained from three catchments and 18 hyetographs. Multiple tests to assess the accuracy and validity of the proposed approach were conducted with both design and real hyetographs. The results show that flood prediction based on neural networks use only 0.5% of the time compared with that of physically based models, with promising accuracy and generalizability. The proposed neural network can also potentially be applied to different but relevant problems, including flood analysis for flood‐safe urban layout planning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.