Abstract
To meet the increasing demand for denser integrated circuits, feedforward control plays an important role in the achievement of high servo performance of wafer stages. The preexisting feedforward control methods, however, are subject to either inflexibility to reference variations or poor robustness. In this article, these deficiencies are removed by a novel variable-gain iterative feedforward tuning (VGIFFT) method. The proposed VGIFFT method attains: 1) no involvement of any parametric model through data-driven estimation; 2) high performance regardless of reference variations through feedforward parameterization; and 3) especially high robustness against stochastic disturbance as well as against model uncertainty through a variable learning gain. What is more, the tradeoff in which preexisting methods are subject to between fast convergence and high robustness is broken through by VGIFFT. Experimental results validate the proposed method and confirm its effectiveness and enhanced performance.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.