Abstract

Model-based fault diagnosis for dynamical systems is a sophisticated task due to model inaccuracies, measurement noise and many possible fault scenarios. By presenting faults in terms of a dictionary, the latter obstacle is recently addressed using well-known techniques for recovering sparse information (e.g. lasso). However, current state-of-the-art methods still require accurate models and measurements for adequate diagnosis. In our contribution we address the problem of data-driven fault diagnosis in the sense that the model of the linear time-invariant (LTI) system is unknown in addition to the fault. Moreover, our aim is to diagnose (concurrent) faults while only having input/output data and the fault dictionary. This implies the user simply plugs in the data and specifies the set of possible faults in order to know the active faults together with an estimate of the dynamic model. The problem is formulated within a blind system identification context resulting in computationally efficient solutions based on convex optimization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.