Abstract
This paper proposes a novel data-driven fault detection (FD) method for Lipschitz nonlinear systems. The proposed method is developed by considering that the sample size of training data is limited, while the global system nonlinearity is taken into account. It is a nonparametric approach and consists of two FD versions corresponding to open-loop and closed-loop systems, respectively. It achieves a tradeoff between approximation and estimation errors. By quantifying the unknown modeling error that is closely related to the threshold used in FD tasks, an upper bound is obtained so that trial-and-error for finding the threshold can be avoided. The effectiveness of the proposed data-driven schemes is illustrated by two simulation studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.