Abstract

The remaining useful lifetime (RUL) and state of charge (SoC) of rechargeable lithium-ion batteries (LIBs) are two integral parts to ensure LIBs working reliably and safely for transportation electrification systems. The two together reflect the state of a battery in use. However, existing capacity estimation approaches focus on separately modeling one of them, and no one has proposed a unified estimation model that is applicable to both RUL and SoC estimation yet. In this article, we propose a unified deep learning method that can be implemented for both RUL and SoC estimation. The proposed method leverages long short-term memory recurrent neural networks to achieve state-of-the-art accurate capacity estimation for LIBs under complex operating conditions. Notably, the unified method can perform not only one-step-ahead prediction but also multistep-ahead estimation with high accuracy, achieving RUL estimation error within ten cycles and SoC estimation error within 0.13%. Experimental data collected from battery testing systems with simulated complex operating conditions are used to train the method. A series of comparative experiments are conducted to compare our method with other existing methods. The experimental results show that our method can increase estimation accuracy and robustness for LIBs estimation problems via capturing the long-term dependencies among battery degradation data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call