Abstract
We have developed a novel method to assist in seismic interpretation. The algorithm learns data-driven edge detectors for structure enhancement when applied to time slices of 3D poststack seismic data. We obtain the operators by distilling the local and structural information retrieved from patches taken randomly from the input time slices. The filters conform to an orthogonal family that behaves as structure-aware Sobel-like edge detectors, and the user can set their size and number. The results from marine Canada and New Zealand 3D seismic data demonstrate that our algorithm allows the semblance attribute to improve the delineation of subsurface channels. This fact is further supported by testing the method with realistic synthetic 2D and 3D data sets containing channeling and meandering systems. We contrast the results with standard plain Sobel filtering, multidirectional Sobel filters of variable size, and the dip-oriented plane-wave destruction Sobel attribute. Our method gives results that are comparable or superior to those of Sobel-based approaches. In addition, the obtained filters can adapt to the geologic structures present in each time slice, which reduces the number of unwanted artifacts in the final product.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.