Abstract
The development of extra-broadband phosphors is essential for next-generation illumination with better color experience. In this work, we report the discovery of the first-known Eu2+-activated full-visible-spectrum phosphor, Sr2AlSi2O6N:Eu2+, identified by combining data mining of high-throughput density functional theory calculations and experimental characterization. Excited by UV-light-emitting diodes (LEDs), Sr2AlSi2O6N:Eu2+ shows a superbroad emission with a bandwidth of 230 nm, the broadest emission bandwidth ever reported, and has excellent thermal quenching resistance (88% intensity at 150 °C). A prototype white LED utilizing only this full-visible-spectrum phosphor exhibits superior color quality (Ra = 97, R9 = 91), outperforming commercial tricolor phosphor-converted LEDs. These findings not only show great promise of Sr2AlSi2O6N:Eu2+ as a single white emitter but also open up in silico design of full-visible-spectra phosphor in a single-phase material to address the reabsorption energy loss in ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.