Abstract
Due to the installation of various apparatus in process industries, both factors of complex structures and severe operating conditions could result in higher accident frequencies and maintenance challenges. Given the importance of security in process systems, this paper presents a data-driven digital twin system for automatic process applications by integrating virtual modeling, process monitoring, diagnosis, and optimized control into a cooperative architecture. For unknown model parameters, the adaptive system identification is proposed to model closed-loop virtual systems and residual signals with fault-free case data. Performance indices are improved to make the design of robust monitoring and diagnosis system to identify the apparatus status. Soft-sensor, parameterization control, and model-matching reconfiguration are ameliorated and incorporated into the optimized control configuration to guarantee stable and safe control performance under apparatus faults. The effectiveness and performance of the proposed digital twin system are evaluated by using different simulations on the Tennessee Eastman benchmark process in the presence of realistic fault scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.