Abstract
Identifying biogeographic regions through cluster analysis of species distribution data is a common method for partitioning ecosystems. Selecting the appropriate cluster analysis method requires a comparison of multiple algorithms. In this study, we demonstrate a data-driven process to select a method for bioregionalization based on community data and test its robustness to data variability following these steps:•We aggregated and curated zooplankton community observations from expeditions in the Northeast Pacific.•We determined the best bioregionalization approach by comparing nine cluster analysis methods using ten goodness of clustering indices.•We evaluated the robustness of the bioregionalization to different sources of sampling and taxonomic variability by comparing the bioregionalization of the overall dataset with bioregionalizations of subsets of the data.The K-means clustering of the log-chord transformed abundance was selected as the optimal method for bioregionalization of the zooplankton dataset. This clustering resulted in the emergence of four bioregions along the cross-shelf gradient: the Offshore, Deep Shelf, Nearshore, and Deep Fjord bioregions. The robustness analyses demonstrated that the bioregionalization was consistent despite variability in the spatial and temporal frequency of sampling, sampling methodology, and taxonomic coverage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.