Abstract
This paper presents a novel approach for developing sustainable building materials through Sequential Learning. Data sets with a total of 1367 formulations of different types of alkali-activated building materials, including fly ash and blast furnace slag-based concrete and their respective compressive strength and CO2-footprint, were compiled from the literature to develop and evaluate this approach. Utilizing this data, a comprehensive computational study was undertaken to evaluate the efficacy of the proposed material design methodologies, simulating laboratory conditions reflective of real-world scenarios. The results indicate a significant reduction in development time and lower research costs enabled through predictions with machine learning. This work challenges common practices in data-driven materials development for building materials. Our results show, training data required for data-driven design may be much less than commonly suggested. Further, it is more important to establish a practical design framework than to choose more accurate models. This approach can be immediately implemented into practical applications and can be translated into significant advances in sustainable building materials development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.