Abstract
Automatic modulation recognition (AMR) is an essential and challenging topic in the development of the cognitive radio (CR), and it is a cornerstone of CR adaptive modulation and demodulation capabilities to sense and learn environments and make corresponding adjustments. AMR is essentially a classification problem, and deep learning achieves outstanding performances in various classification tasks. So, this paper proposes a deep learning-based method, combined with two convolutional neural networks (CNNs) trained on different datasets, to achieve higher accuracy AMR. A CNN is trained on samples composed of in-phase and quadrature component signals, otherwise known as in-phase and quadrature samples, to distinguish modulation modes, that are relatively easy to identify. We adopt dropout instead of pooling operation to achieve higher recognition accuracy. A CNN based on constellation diagrams is also designed to recognize modulation modes that are difficult to distinguish in the former CNN, such as 16 quadratic-amplitude modulation (QAM) and 64 QAM, demonstrating the ability to classify QAM signals even in scenarios with a low signal-to-noise ratio.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.