Abstract

Damage types are important for structural condition assessment, however, for conventionally guided wave-based inspections, the characteristics extracted from the guided wave packets are usually used to detect, locate and quantify the damages, but not classify them. In this work, the data-driven method is proposed to classify the common damages in the pipe utilizing the guided wave signals obtained from numerous damage detection tests. The fundamental torsional mode T(0,1) is selected to conduct the guided wave-based damage detection to reduce the complexity of signal processing for its almost non-dispersive property. A total of 520 groups of experimental data under different degrees of damage were obtained to verify the proposed method. Finally, with help of a deep neural network (DNN) algorithm, all response data from the damages in the pipes were all clearly classified with quite high probability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.