Abstract
We consider data-driven control of input-affine systems via approximate nonlinearity cancellation. Data-dependent semi-definite program is developed to characterize the stabilizer such that the linear dynamics of the closed-loop systems is stabilized and the influence of the nonlinear dynamics is decreased. Because of the additional nonlinearity brought by the state-dependent input vector field, nonlinearity cancellation is more difficult to achieve. We show that under some assumptions on the nonlinearity, the nonlinearity cancellation control approach can render the equilibrium locally asymptotically stable even if the additional nonlinearity is neglected. Data-based estimation of the region of the attraction is also presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.