Abstract
As one of data-driven approaches to computational mechanics in elasticity, this paper presents a method finding a bound for structural response, taking uncertainty in a material data set into account. For construction of an uncertainty set, we adopt the segmented least squares so that a data set that is not fitted well by the linear regression model can be dealt with. Since the obtained uncertainty set is nonconvex, the optimization problem solved for the uncertainty analysis is nonconvex. We recast this optimization problem as a mixed-integer programming problem to find a global optimal solution. This global optimality, together with a fundamental property of the order statistics, guarantees that the obtained bound for the structural response is conservative, in the sense that, at least a specified confidence level, probability that the structural response is in this bound is no smaller than a specified target value. We present numerical examples for three different types of skeletal structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Japan Journal of Industrial and Applied Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.