Abstract

We present a data-driven blended equation of state (EOS) approach for condensed phase high explosive materials. We first calibrate four different high explosive materials (Nitromethane, HMX, PETN and TATB) using a single or blending multiple Fried Howard Gibbs (FHG) EOS by an ad hoc trial and error method that has been used in the past, and which leads to a predictive model that can be used in engineering calculations. This ad-hoc calibration is then re-calibrated based on Bayesian optimisation via Gaussian Process regression. The two calibrations are then compared qualitatively and quantitatively and are shown to be in good to excellent agreement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.