Abstract
Artificial intelligence (AI) and its sub-domains of machine learning and deep learning have kindled the interests of both industry practitioners and academicians. Its contribution to the manufacturing industry in making intelligent predictions about a machinery's health and its working has seen a huge surge in the research carried in recent years. Nowadays, AI in manufacturing is popularly applied for the efficient fault detection of machinery using data analytics. Traditional fault predictive classification and further diagnosis have pitfalls such as low prediction accuracy, poor feature extraction and susceptibility to noise. To overcome these disadvantages, this paper proposes the deep-learning-based hybrid autoencoders (AE) - long-short-term memory (LSTM) framework for fault detection. The dimensionality reduction with automatic latent feature extraction by autoencoders and temporal feature consideration by LSTM help to achieve high fault diagnosis accuracy. The empirical results show that fault detection of roll bearings based on the proposed hybrid AE-LSTM deep learning technique achieved superior results in comparison to the traditional K-means clustering technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Modelling, Identification and Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.